

EFFICIENT DEVELOPMENT OF HIGHLY REUSABLE DISTRIBUTED
SYSTEMS USING THE TCAO

Santokh Singh
Centre for Software Innovation
and Dept of Computer Science

The University of Auckland
Private Bag 92019

New Zealand
santokh@cs.auckland.ac.nz

Sheri Zidie Xu
Dept of Computer Science

The University of Auckland
Private Bag 92019

New Zealand
zxu018@ec.auckland.ac.nz

Harveen Kaur
Department of Mathematics
The University of Auckland,

Private Bag 92019
New Zealand

hkau017@ec.auckland.ac.nz

ABSTRACT
Currently there are neither structured nor efficient ways to
develop and reuse non-trivial and complex distributed
systems despite the fact that there exist numerous sources
of software, components and knowledge relating to this
field. In this paper we describe how we use a novel
all-encompassing development methodology called the
Total Components Aspect-Oriented (TCAO) methodology
to efficiently and rapidly design and develop reusable
distributed systems of any size, functionality and
complexity. We further describe our other novel concepts
of using Early Aspect-Oriented Components (EAOC) and
Early Aspect-Oriented Software (EAOS), collectively
known as early systemic-entities, to get an early head-start
in the development process starting from the requirements
engineering phase itself and spanning throughout all the
phases. TCAO also encompasses the activities of
deployment, maintenance and refactoring to add any
further remoting functionalities if the need arises. We
further describe how we use TCAO to identify, isolate and
use aspects, which are systemic cross-cutting concerns, to
make the analysis, design, modelling and implementations
of reusable distributed systems easier to understand,
manage and control. With the aid of an exemplar software
system, we also describe how a non-trivial reusable
distributed system can be efficiently and rapidly developed
by using our methodology to facilitate technology transfer
and reuse.

KEY WORDS
Distributed Systems, Software Engineering, Aspects and
Components

1. Introduction

Distributed applications have become increasingly
popular, essential and important but at the same time have
evolved into complex and sophisticated systems. The need
for such systems stems from their power to provide the
much needed capabilities of allowing wide scale sharing of
resources over spatially separated machines, higher
performance through the use of processors on participating
computers, increased reliability in terms of fault tolerance

and catering for human-to-human, human-to-machine or
machine-to-machine communication through
comprehensible interfaces [10], [14]. However, the
development of distributed systems has become
increasingly cumbersome and complicated because the
development process is tedious, difficult control, costly to
manage and the resulting software scattered, hard to
understand and maintain. Current development techniques,
including current Component Based Software
Development (CBSD) methodologies, still cannot address
these issues though these methodologies have achieved
limited success pertaining to the design, development and
maintenance of non-distributed software systems [2], [22].
This type of support is glaringly lacking in the
development of distributed systems whose development is
further complicated due to the fact that the software parts
reside on different machines and communicate with each
other through a variety of connection mechanisms and
protocols like SOAP, HTTP and WAP.
In this paper we propose a novel all-encompassing
development methodology called the Total Components
Aspect-Oriented (TCAO) methodology to efficiently and
rapidly design and develop reusable distributed systems of
any size, functionality and complexity. This methodology
can be applied to the whole distributed software
development process, starting early in the Requirements
Engineering phase, stretching through the analysis, design
and implementation stages and extending through the
delivery and deployment phases. It also encompasses all
testing stages and even allows development to be carried
out piecemeal-by-piecemeal and iteratively. It is flexible
and can be applied equally well in Agile environments like
eXtreme Programming techniques [1] or eXtreme AOCE
[20], and effectively takes into consideration any
subsequent maintenance or refactoring of the remote
systems that were developed using TCAO. Above all, it
allows for the effective identification and extraction of
code, components and subsystems for reuse in other
distributed systems to increase productivity and efficiency
in their development [9]. We will first describe the
motivation behind this research for developing highly
reusable distributed software systems and the need for a
methodology to support their development.

2. Motivation

Distributed systems that are non-trivial, for instance those
used for e-Businesses, are almost always large, complex
and currently difficult to develop, maintain and reuse. Such
distributed systems use either the internet and/or intranet
technologies as the fundamental part of their architecture.
The more popular and current infrastructures and
technologies for distributed system are either based on
CORBA, DCOM, RMI, web services, EDI and XML over
TCP/IP, or an extension or combination of these
technologies [24]. These infrastructures have advanced
mechanisms to abstract remote component interfaces to
support cross-organisational communication in a Service
Oriented Architecture. Building such systems from scratch
can expend vast amounts of development time, skills and
other resources including money, manpower and material.
A lot of these precious resources can be saved if we can
identify, extract and recycle software parts when we
develop new remote software systems. But currently there
are neither consistent ways nor proper reusable techniques
to identify and reuse software from distributed systems. We
are as such motivated to expound our concepts of
developing highly reusable distributed systems to achieve
the objectives of producing understandable, maintainable,
reliable and reusable software systems and components
more efficiently and productively. We develop such
systems by using our novel development methodology
called the Total Components Aspect-Oriented (TCAO)
methodology that can support our development ideas about
efficient software reuse for remoting purposes.

Figure 1: Service Oriented Architecture of a
distributed system composed of highly reused software

The Service Oriented Architectural diagram of a reusable
distributed system is shown in Figure 1. This system itself
can be composed of highly reused software taken from
other distributed software systems. It has client-server
architecture with discovery agencies to locate servers and
enable integration between the clients and the servers.
Clients connect to the servers through connection channels
and send their requests to the servers using particular
protocols, e.g. the Simple Object Access Protocol (SOAP)
over HTTP [6], [16].
The reused composite of web services is a more complex
subsystem that links to multiple web services and acts as an
intermediary between the clients and the multiple
web-services that are consumed [18]. The clients call a
single composite object which in turn calls the web
services linked to it. This essentially makes the task of
consuming web services easier for the clients as they do not
need to know which web service the composite object is
calling. Each client just makes a request to the composite
object and gets a response back from the composite, the
transactions between the composite and the web services it
consumes is hidden from the clients [21].
To be highly reusable, all the designs and implementations
of the distributed system and its sub-systems, components
and functions need to be well described, precisely
documented and capable of indexing so that accurate
discovery for software reuse is possible [6], [19]. All the
subsystems shown in figure 1 above are composed of some
reused software, and the resultant distributed system itself
can be reused for developing other distributed systems,
hence it is called a reusable distributed system.
Development of reusable distributed systems using TCAO
increases efficiency and productivity while at the same
time bringing about savings in costs, with fewer developers
and less machines and resources required. The software
produced is also more manageable, controllable,
maintainable and understandable compared to that
produced using existing methodologies, thus allowing for
further efficient and effective reuse of distributed software
and its components. In the next section we explore, discuss
and critically analyse some of the existing and more
popular development methodologies and related research
work.

3. Related Work

Component Based Software Engineering (CBSE)
techniques have been used, albeit with limited success, to
address the issues to make software development easier to
manage and control, with the aim of also making the
resulting software more reusable for future purposes [4].
With the increase in size, functionality and complexity of
current software systems, especially in remotely distributed
systems, the currently available CBSE methodologies are
unable to achieve these goals. Examples of the more
popularly used CBSE methodologies include the Topcoder
[2], Aspect-Oriented Component Engineering [13],
OMG’s Model Driven Architecture [5], The Select

Perspective and the Architecture Based Component (ABC)
Composition Approach [17].
TopCoderR is a very comprehensive CBSE methodology,
and it has four stages to each release of a component, i.e.
the specification, architecture/design, development/testing,
and certification stages. If any of these phases fail an
acceptance test, the phase has to be restarted. TopCoderR as
such is a tedious development methodology and focuses on
the lower-level features of the components and software
system. The other CBSE methodologies like ABC, OMG’s
Model Driven Architecture (MDA) and Select perspective
also do not focus on the high level features of the
components and their services. These can make the designs
and their analysis hard to understand at higher levels or
during maintenance and refactoring. Higher level systemic
component descriptions such as transaction processing,
persistency, security, user interfaces, collaboration,
configuration etc. are all not addressed in these CBSE
methodologies. Such high-level features are important for
understanding and using systemic components and their
functionalities, especially in distributed systems which can
be complex.
On the other-hand the AOCE methodology uses a concept
of different cross cutting systemic concerns or aspects (e.g.
user interface, persistency, security, transaction processing,
resource utilisation, configuration aspects etc.) which are
used to categorize and reason about provided and required
services of software components in the system [13], [20].
AOCE caters for the identification, manipulation,
description and reasoning about the software component’s
high-level functional and non-functional requirements.
These requirements may be grouped by different aspects or
a composite of aspects, with “aspect details” and “aspect
detail properties” providing an ontology and descriptive
language to describe constraints relating to the provided
and required properties between components and their
compositions [12]. Components in AOCE are implemented
using aspect categorisations and characterizations to
support aspect-component description, discovery and
adaptation. Though AOCE may have extensive description
and support for aspects, it does not, and cannot, cater for
early component and software discovery and identification
for reuse purposes. This hinders efficiency and
effectiveness of using components early in the
development phases and leads to wastage in terms of time
and other resources because these issues are only addressed
later on in the development cycle.
All the current CBSE methodologies have attempted to use
the best approaches from existing traditional software
development methodologies, but have failed to sufficiently
utilize the power of community-based development and
have not sufficiently addressed the all-important issues of
code and designs reusability, understandability and
scalability [3]. With the exception of AOCE, all the
methodologies tend to focus more on low level issues and
features of the software components rather than the
components’ high-level requirements and inter-component
relationships. None of the currently existing CBSE
methodologies, including AOCE, have proper steps to

identify reusable software for distributed systems nor do
they deal with early components and early software.
Furthermore none of these development methodologies can
be adequately or efficiently applied to all the stages of the
development life cycle.

4. Total Components Aspect-Oriented
Methodology

To overcome the obstacles and setbacks inherent in the
current methodologies described above, we formulated,
refined and tested a new and novel development
methodology called the Total Components
Aspect-Oriented (TCAO) methodology. It is a total
development methodology because it can be used in
totality for each and every phase of the development
process, i.e. including from the inception, analysis, design,
implementation stages right through to the software’s
delivery, deployment, and subsequent maintenance (if any)
of software systems. TCAO covers and caters for all the
stages and aspects of the software development process and
cycle, and can also be applied for the discovery,
identification and reuse of the whole software system or its
components and subsystems. The concept of early
components, early software and cross-cutting issues
(aspects) used in TCAO and its software development
procedures are discussed in the following subsections.

4.1 Early Aspect-Oriented Components and Software

 Early Aspect-Oriented Components and Software are
respectively software components and subsystems which
are identified and used very early in the Requirement
Engineering stage itself. These components and software
are aspectized to address the issue of cross-cutting
concerns that arise starting from the Requirements
Engineering phase. An example of these concepts used in a
practical situation is mentioned below whereby we reuse
the software from a collaborative Travel Planner system to
rapidly develop an Online Banking system using TCAO.
Figure 2 above show the Early AO-Components and Early
AO-Software that was identified, extracted and reused
from the collaborative Travel Planner prototype for the
new Online Banking System. Any reused software that
needed adaptation was refactored and modified so that it
can be made fit for use.
The aspects in both the corresponding components and
software from the Travel Planning system and the Online
Banking system are the same as such the software can be
more easily adapted to suit the new system. The customer
and staff components shown in both systems have same
use, aspects and support same operations; therefore they
can be practically reused verbatim, except with minor
additions like the inclusion bank account objects. Our
approach can also be applied to the reuse of generic
components from various different software applications,
provided the components have the requisite functionalities
needed for the new software.

Figure 2: Early AO-Components and Early
AO-Software identified, extracted and reused for the
Online Banking System from the Collaborative Travel
Planner.
The search subsystem of the Travel Planner could also be
beneficially reused through modifications/alterations to the
functional name and input parameters, but the business
logic, aspect types and details remain essentially the same.
This example showed us that we can salvage and reuse
software from systems provided we create and document
them consistently and clearly.

4.2 Procedures involved in TCAO

TCAO allows for the effective identification and reuse of
recyclable software or components very early in the
development process, i.e. starting from the requirements
engineering phase itself. This is done after the development
team has ascertained the specifications of the software to be
constructed. The steps involved in developing software
systems using TCAO are described below:
1. First, the initial Requirements Engineering (RE)
diagrams based on the client’s specifications and through
discussions with all the relevant parties are drawn and agreed
upon by all concerned.
2. Next, based on the RE diagrams drawn in (1.)
above, we identify all Early AO-Components and Early
AO-Software from existing distributed software that has the
possibility to be reused in the new distributed system. We
also componentize the various use cases in 1. We search for
suitable and matching components and subsystems from our

repository of existing and available reusable components,
software etc. The functions and location of all discovered
software that is identified as reusable is be recorded.
3. If the components, aspects, software etc. cannot be
found in our repository, we can search for them in other
sources, for example, the internet, from other developers or
Commercial Off The Shelf (COTS) software [7], [23].
4. After finally ascertaining the most suitable software
parts we document and record the location of the identified
reusable software parts collectively called Early Systemic
Entities and mark this information into the RE diagram, to
complete the TCAO use case diagrams.
5. We then draw the TCAO analysis diagram based on
the use cases and Early Systemic Entities.
6. The TCAO design diagrams, sequences diagram,
collaborative diagram are then drawn.
7. All the drawings and designs are well documented,
regularly updated and stored for any current and future reuse
purposes.
8. The reusable early systemic entities are then
extracted and incorporated into the library folders and
packages of the system to be developed. The distributed
system is then implemented by auto-code generation.
9. The generated code is then further debugged,
refined and tweaked. The TCAO process uses iterative
testing and refactoring until the distributed system is
developed based on the required specifications.
10. The system is then delivered and deployed for the
client.
11. Any further maintenance, upgrading and
refactoring of the distributed system can be carried out more
consistently and coherently as the code, patterns,
architectural, analyse and design diagrams are well
documented and easily accessible to those who are
responsible for the activities [8]. The documentation also
aids in the reuse of the software and its parts. All
documentation is kept updated and current, using two styles
of documentation, one for machines to assist in automatic
discovery and the other more descriptive with more
elaborate instructions for human consumption.

<?xml version="1.0" encoding="utf-8" ?>
<definitions…..
xmlns:wsdl="http://localhost/MyWebService/
bin/mywsdlSchema.xml" ………>
………
 <aowsdl:ReusedComponents
Name="Persistency_SearchAccountTypeCompo
nent">
 <wsdl:Documentation
Information="Exposes aspects to find types
from a particular bank. After finding the
account type users can make specific
transactions depending on… All human
readable information go here. This includes all
instructions and high level documentation
about the reused components/web service for
human consumption. " />
 <wsdl:Description Description="To
search for account types to make financial
transactions" />

Figure 3: XML styled documentation for the reused
early components and software

Documentation is of paramount importance in TCAO
though the code itself is written in a consistent and clear
manner and can act like the documentation for very good
developers. The documentation is written in XML format
because it can be used as the universal data format for
integrated electronic business solutions, is consistent,
extensible and can be written so that is can understood by
other machines to allow for dynamic discovery of
components.As shown in Figure 3, TCAO provides two
levels of documentation i.e. one called the Information
element is human readable, and is very verbose and written
in high level language. The other one is the Description
element, which is machine readable and is compact, crisp
and written with fewer words, mostly keywords. This
machine readable format allows for automatic discovery
for the software and components. The software is also
classified according to proper categories and subcategories
to enable easier search. Examples of the top level
categories include database functionalities, security, higher
level components like a Person Component etc. while the
subcategory example include login and password (for the
security category), Transactions and Connections (for
Database) and Customer, Staff etc, components (for the
Person Component).
If the client decides, alterations and modifications to the
software’s specifications, designs and implementations can
be made during any of the development stages because the
software is composed of components that are more
understandable, pluggable and playable. The designs,
components and software from the newly built reusable
distributed system can also be efficiently reused in other
software applications. Besides being an efficient and
effective CBSE methodology, TCAO also better
modularize and divide the distributed system into
components coherently and consistently across different
platforms, technologies and domains.

5 Using TCAO to develop an Online
banking system

To show that the TCAO methodology is efficient, effective
and practicable, we will illustrate how we can apply it to
design and develop an Online Banking prototype system
from existing reusable components and software. We used
an existing distributed software system, a collaborative
web services-based Travel Planner system to extract the

Early Aspect-Oriented Components (EAOC) and Early
Aspect-Oriented Software (EAOS), which we reused in
our new system.
In all our diagrams and designs, we abbreviated the aspect
types according to the following notations.

Aspect type Notation Provided/required
Security [[Sec]]
Persistency [[Pers]]
Transaction
Processing

[[TP]]

User Interface [[UI]]
Resource
Utilization

[[RU]]

Collaboration [[Col]]
Configuration [[Conf]]
Performance [[Perf]]

A positive ‘+’ sign
prefixing the aspect
(e.g. [[+Sec]])
indicates that the
aspect is provided
by the component
while a negative ‘-’
sign (e.g. [[-Sec]])
means that the
aspect is required
by the component.

Table 1: Some aspect types identified in our reusable

distributed systems
Some of the identified aspect types and their abbreviations
used in our distributed systems are shown in Table 1 above.
Each aspect type has aspect details and properties
associated to the aspect. For instance, the aspects that are
“provided” by software components are prefixed with a
“+” sign and those “required” with a “-”sign. We further
use a consistent naming convention to write the
aspects/functions by prefixing the sign and aspect type to
the aspect name separated by an underscore. For instance,
[[+Sec_authenticate()]] means that the particular
component provides an aspect of the type security which
enables authentication functions to be performed. This
function cross-cuts many parts of code and components in
both the Travel Planner and the Online Banking System,
and as such is required by numerous components in the
software. Using our conventions, it will be written as
[[-Sec_authenticate()]], the negative sign to signify that the
aspect is required by the component/system.
The high level specifications of the Online Banking
prototype is that it should be a distributed system capable
of handling secured transactions over the internet for
managing an authorised person’s finances wherever and
whenever they need to do it, i.e. as long as they have
internet access. All transactions are also to be done in real
time and capable of rollback if the transaction does not
complete or is aborted.

Fig. 4 Enhanced TCAO use case diagram of the collaborative Travel Planner system with the reusable Early Systemic
Entities shown shaded.
Figure 4 shows the enhanced TCAO Requirements
Engineering diagram from the Flights system of the
collaborative Travel Planner application with the reusable
Early Systemic Entities clearly marked out for
consideration. The reusable early components are shaded

grey and the reusable early software is placed within a
dotted-box. The aspects involved are shown in square
brackets e.g. [[Pers, TP, Sec]]. The unshaded components
are not reused in the Online Banking System.

Fig. 5 Enhanced TCAO use case diagram of the new online banking system with the Early Systemic Entities reused and
refactored from the Travel Planner

Where necessary, we also adapted and modified those
identified early systemic entities so that they can be reused
beneficially in the Online Banking System. Figure 5 shows
the Requirement Engineering diagram of the Online
Banking system with the reused individual components
shaded grey and the reused early software within the
dotted-box. This concept of identifying and using early
systemic entities during the Requirement Engineering
phase gives developers a head-start and allows for shorter
development time, thus increasing productivity. The
unshaded components and software parts are not retrieved
from the Travel Planner system, but if available, they can
be extracted from other existing software or Commercial
off the shelf (COTS) components. If such components are
unavailable, then they need to be designed and developed
from scratch as per the specifications of the application.

Figure 6: Design diagram showing the reused
components and example of the construction of new
reusable subsystems.
The design diagram in Figure 6 shows the reused
components and an example of how new reusable
subsystems are constructed so that they can be further
reused in other distributed systems. The aspects are
identified and specified for each and every component and
subsystem. The XML-based documentation is consistently
updated at all times so that we can refactor and modify the
application more easily if the need arises. Good
documentation also aids developers to understand the
designs/implementations faster if they join the
development team after the project has already been

launched. This has the effect of making the developers
more productive at the earliest possible time by reducing
their time taken to learn and familiarise themselves with
the well-documented system.

6 Discussions

Both the collaborative Travel Planner and the Online
Banking System were built one after another by 2 pairs of
different developers, each pair working together in agile
conditions, i.e. taking turns to be the navigator and driver
of the development process respectively and development
time was measured. The collaborative Travel Planner took
a very long time to develop, i.e. about 6 months (i.e. 750
hours, averaging about 30 hours per week of joint effort).
The reason for the long time span was mainly because there
was very little easily accessible and reusable software [15].
On the other hand the Online Banking System took only
about 2 months to develop, i.e. about 300 hours of total
development time, in large part due to the availability of
the well-documented and reusable distributed systemic
parts from the Travel Planner System.
The Travel Planner was practically built from scratch and
there were no proper reusable software parts besides code
snippets that had to be aspectized and componentized.
There were very few early systemic entities in the form of
early components and early software available to be
plugged into its requirements engineering phase. Existing
code also had very poor documentation associated with it
and the developers’ motivation level at times was very low
as there were not many avenues to search for existing
designs and implementations.

Flights Search #2
findFlights()

Travel Planner Client
findFlights()
bookFlights()
payBookings()
cancelBook()

Flights Search #1
findFlights()
bookFlights()

via Travel-agencies
bookItems()
doPayment()
undoBooking()

Payment Service

processPayment()

UDDI

Payment Adaptor
doPayment()
creditReversal()

Integrate &
Consume Discovery

Compose

[[UI, TP, Pers, Prf]] [[Col, Conf]]

[[TP, Pers, RU>]]

[[Col, Conf]]

[[TP, Pers, RU]]

[[TP, Pers, RU]]

[[UI, TP, Pers, Prf]]

Figure 7 The Travel Planner System that has reusable
software

Accounts Search #2
findAccounts ()
listAccountDetails()

Online Banking Client
findAccounts()
listAccountDetaila()
doTransaction()
cancelTransaction()

Accounts Search #1
findAccounts ()
listAccountDetails()

via backup-agencies
findAccounts()
listAccountDetaila()
doTransaction()
cancelTransaction()

Transaction Service

processTransaction()

Reused UDDI

AccTrans Adaptor
doTransaction()
findAccounts()
creditReversal()

Second level Security Aspects
Authenticate()
Encrypt()

Integrate &
Consume Discovery

Compose

[[UI, TP, Pers, Prf]] [[Col, Conf]]

[[TP, Pers, RU>]]

[[Col, Conf]]

[[TP, Pers, RU]]

[[TP, Pers, RU]]

[[UI, TP, Pers, Prf]]

[[Sec]]

[[Sec]]

Figure 8 The Online Banking System built from
reusable software
Figure 7 shows the inter-relationships between the various
distributed sub-systemic parts in the collaborative Travel
Planner system, including the aspects and operations
involved. Figure 8 illustrates the inter-relationships between
the various distributed sub-systems in the Online Banking
System. As can be seen, there exists similarities and
differences between the two systems, the similarities are
more pronounced in the overall architecture as both are
distributed systems and are built using the same technology,
i.e. both use the Universal Description, Discovery and
Integration tool as the discovery agency, use web services
for remote operations, SOAP over HTTP as the transport
and communication protocol etc. These similarities were
found to have a very important impact in enhancing the
reusability of software in distributed systems.

Figure 9: The collaborative Travel Planner providing
the reusable early systemic entities

Figure 10 The Online Banking System built from
reusable software
Figures 9 and 10 depict the Browser User Interfaces (BUI)
of the collaborative Travel Planner and Online Banking
System respectively. The Human Computer Interface ideas,
designs and code for the Travel Planner BUI were reused in
the Online Banking System. This is because the concepts
and actions involved in both applications, e.g. the submit
buttons, text fields action events etc. were essentially the
same and could be efficiently migrated across with
adjustment to the underlying business logic.
One of the problems that we discovered associated with
utilising early software is trying to reuse software that
finally turned out to be not of the correct type. Going along
wrong tracks can cause wastage in terms of time and
resources as the software may ultimately be unsalvageable
and not of the type that we wanted. This was mainly due to
the fact that the software was obtained from third party
vendors and was either incorrectly or insufficiently
documented and in most cases only the byte code was
available with the source code missing. One proposed
solution to this is to use only software from trusted vendors
or developers that is well documented with all source code
supplied.
We may be encountered some difficulty if we try to reuse
very large early systemic entities, because the bigger the
component or subsystem being considered for reuse, the
more adaptation and modification work there may be that
needs to be done on the entity. An example of a very large
entity that we reused from the Travel Planner in the Online
Banking System is shown in Figure 11 below. It is a hotel
room’s booking subsystem that was reused to make and
confirm financial transactions in the Online Banking
System. Though the adaptation and refactoring of large
reusable pieces software like this can take a fair amount of
time and resources, we found that the time spent refactoring
and modifying such existing reusable software so that it is fit
for reuse is still less than that would have been required to
build it from scratch.

Figure 11: High level TCAO designs of a large reusable early systemic entity from the collaborative Travel Planner
system.
Our experience of development by using TCAO and
reusable software in the Online Banking System also
showed us some other exciting findings. We realised that
through our clear coding conventions and good
XML-based documentation practices, we were able to
easily identify already developed software parts and
components within the Online Banking System itself that
can be further duplicated, adapted and reused within this
system itself. For instance, the component for home loan
calculations was duplicated, refactored and reused in other
components namely for the budget calculating component,
personal lending component and business lending
component. This made the development work much easier,
efficient and productive.

7 Conclusions

We described how we can use a novel all-encompassing
development methodology called the Total Components
Aspect-Oriented (TCAO) methodology to efficiently and
rapidly design and develop reusable distributed systems of
any size, functionality and complexity. The distributed
systems are developed using identified Early
Aspect-Oriented Components (EAOC) and Early
Aspect-Oriented Software (EAOS), collectively known as
early systemic-entities. These entities are used starting
from the requirements engineering phase itself so as to get
a head-start in the development process. TCAO is a total
development methodology that can be applied to all the
development phases of distributed software development,

i.e. starting from the inception phases and spanning
throughout all the phases, including the deployment,
maintenance and refactoring of the system to add any
further remoting functionalities. We can also use TCAO to
identify, isolate and use aspects, which are systemic
cross-cutting concerns, to make the analysis, design,
modelling and implementations of reusable distributed
systems easier to understand, manage and control.
To have more control and to increase efficiency and
productivity in developing distributed systems, our
development methodology supports iterative development
cycles and can also be employed using test-driven agile
approaches. Through our clear and consistent coding
conventions and good XML-based documentation
practices, we were able to easily identify software parts and
components in distributed for reuse. We also demonstrated
how we developed a non-trivial reusable distributed
system efficiently and rapidly through reusing early
systemic-entities. The development of such systems using
reused software slashed the development time by more
than half. Our future works include building tool support
for TCAO and using these tools to develop, refactor,
componentize and document distributed software systems
to make them more reusable. This will also help expand
our repository and library of reusable software parts and
designs that will be beneficial to developers of distributed
systems in particular and the software community as a
whole.

8 References

[1] P. Abrahamsson, Extreme programming: first results
from a controlled case study. Proc. 29th Euromicro
Conference “New Waves in System Architecture”, 2003,
259-266.
[2] P. Allen, & S. Frost, Component-based development
for enterprise systems: Applying the Select Perspective
(Cambridge University Press, NY: SIGS Books, 1998).

[3] G. Bastide, A refactoring-based tool for software
component adaptation. Proc. 10th European Conference
on Software Maintenance and Reengineering, 2006.

[4] A. Bertolino, & R. Mirandola, Towards
component-based software performance engineering,
Proc. 6th Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction at
ICSE, 2003, 1-6.

[5] J. Bezivin, S. Hammoudi, D. Lopes, & F. Jouault,
Applying MDA approach for Web service platform.
Enterprise Distributed Object Computing Conference,
Proc. Eighth IEEE International, 2004, 58-70.

[6] E. Cerami, Web services essentials - distributed
applications with XML-RPC, SOAP, UDDI & WSDL
(Sebastopol, CA: O’Reilly, 2002).

[7] K. Crowston, J. Howison and H. Annabi, Information
systems success in free and open source software
development: theory and measures, Software Process
Improvement and Practice, 11(2), 2006, 123-48.

[8] M. Duell, Looking beyond software to understand
software design patterns, Computer Software and
Applications Conference, Proc. The Twenty-Third Annual
International, 1999, 312-313.

[9] W. Frakes, & C. Fox, Sixteen questions about
software reuse, Communications of the ACM, 38(6), 1995,
75-87.

[10] D. Garmus, and D. Herron, Function point analysis,
measurement practices for successful software projects
(Addison-Wesley Information Technology Series, 2001).

[11] Gómez, M., Plaza, E. (2004): Extending
matchmaking to maximize capability reuse. Proc. 3rd
International Joint Conference in Autonomous Agents and
Multiagent Systems, 2004, 114-151.

[12] J.C. Grundy, Multi-perspective specification, design
and implementation of software components using aspects.
International Journal of Software Engineering and
Knowledge Engineering, 10(6), 2000, 713-734.

[13] J.C. Grundy, & J.G. Hosking, Developing software
components with aspects: some issues and experiences.
Chapter 25 in Aspect-Oriented Software Development.
Prentice-Hall, 2004, 585-604.

[14] A. Knight, & N. Dai, Objects and the Web. IEEE
Software, 19(2), 2002, 51-59.

[15] A. Liotta, C. Ragusa, & M. Ballette, A novel
framework for the evaluation, verification and validation
of distributed applications and services, World Scientific
and Engineering Academy and Society Transactions on
Computers, 2(4), 2003, 1108-13.

[16] M. Litoiu, Migrating to Web services - latency and
scalability, Proc. Fourth International Workshop on Web
Site Evolution, IEEE CS Press, 2002, 13-20.

[17] H. Mei, ABC: supporting software architectures in
the whole lifecycle, Proc. 2nd International Conference on
Software Engineering and Formal Methods, 2004,
342-343.

[18] R.S. Moreira, G.S. Blair, & E. Carrapatoso, A
reflective component-based and architecture aware
framework to manage architecture composition. Proc. of
3rd Int’l Symp. On Distributed Objects and Applications,
2001, 187- 196.

[19] M. Niazi, D. Wilson, & D. Zowghi, Critical success
factors for software process improvement implementation:
an empirical study, Software Process Improvement and
Practice, 11(2), 2006, 193-211.

[20] S. Singh, H. C. Chen, O. Hunter, J. C. Grundy and J.
G. Hosking, Improving agile software development using
eXtreme AOCE and Aspect Oriented CVS, APSEC 2005,
752-762.

[21] M. Stearns, & G. Piccinelli, Managing interaction
concerns in web-service systems, Proc. 22nd International
Conference on Distributed Computing Systems
Workshops. Vienna, Austria, 2002, 424-429.

[22] P. Vitharana, F. Mariam, & H. Jain, Design,
retrieval, and assembly in component-based software
development, Communications of the ACM, 46(11), 2003,
88-97.

[23] T. Wanyama, & B.H. Far, Towards providing
decision support for COTS selection, Electrical and
Computer Engineering Canadian Conference, 2005,
908-911.

[24] L.J. Zhang, H. Li, H. Chang, & T.Chao, XML-based
advanced UDDI search mechanism for B2B integration,
Proc. the Fourth IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based
Information Systems, 2002, 9-16.

	1. Introduction
	2. Motivation
	3. Related Work
	4. Total Components Aspect-Oriented Methodology
	4.1 Early Aspect-Oriented Components and Software
	4.2 Procedures involved in TCAO
	5 Using TCAO to develop an Online banking system
	6 Discussions
	7 Conclusions
	8 References

